Elektrodynamik
Theoretische Physik II
2. Auflage September 2022
XXII, 457 Seiten, Softcover
200 Abbildungen
Lehrbuch
Kurzbeschreibung
Die Neuauflage gibt eine Einführung in die konzeptionell und mathematisch anspruchsvolle Elektrodynamik. Ausgehend von experimentellen Erkenntnissen über elektrische und magnetische Felder werden die Studierenden an die Maxwell-Gleichungen im Vakuum und in Materie herangeführt.
Jetzt kaufen
Preis: 54,90 €
Preis inkl. MwSt, zzgl. Versand
Euro-Preise für Wiley-VCH- und Ernst & Sohn-Titel sind nur für Deutschland gültig. In EU-Ländern gilt die lokale Mehrwertsteuer. Portokosten werden berechnet.
1.1 Der Feldbegriff in der Mechanik und der Elektrodynamik
1.2 Aufbau des Buches
1.3 Gültigkeitsgrenzen der Elektrodynamik
2 HEURISTISCHE BEGRÜNDUNG DER MAXWELL-GLEICHUNGEN
2.1 Das elektrische Feld (Elektrostatik)
2.2 Das magnetische Feld (Magnetostatik)
2.3 Maxwell-Gleichungen
3 RAUM UND ZEIT
3.1 Fundamentale Wechselwirkungen
3.2 Das Relativitätsprinzip
3.3 Abstände um Raum-Zeit-Kontinuum
3.4 Die Eigenzeit
3.5 Die Lorentz-Transformation
3.6 Tensorkalkül im pseudoeuklidischen Raum
4 LADUNGEN IN ELEKTROMAGNETISCHEN FELDERN
4.1 Das Konzept der Feldtheorie
4.2 Das freie Teilchen
4.3 Das Viererpotential
4.4 Kovariante Bewegungsgleichungen
4.5 Der Anschluss an die Elektrodynamik
4.6 Eichinvarianz
4.7 Lorentz-Transformationen der Felder
4.8 Elektromagnetische Feldinvarianten
5 DIE MAXWELL-GLEICHUNGEN
5.1 Die erste Gruppe der Maxwell-Gleichungen
5.2 Die Feldwirkung
5.3 Der Vierervektor des Stroms
5.4 Die zweite Gruppe der Maxwell-Gleichungen
5.5 Die vollständigen Bewegungsgleichungen
5.6 Die Kontinuitätsgleichung
5.7 Energiedichte und Energiestrom
5.8 Resümee
6 ELEKTROSTATIK IM VAKUUM
6.1 Die Feldgleichungen der Elektrostatik
6.2 Lösung der Feldgleichungen für Punktladungen und Ladungsverteilungen
6.3 Felder verschiedener Ladungsverteilungen
6.4 Multipolentwicklung und Fernfeld einer lokalisierten Ladungsverteilung
6.5 Elektrische Energie von Ladungssystemen
6.6 Kräfte im elektrischen Feld
7 ELEKTROSTATIK IN MATERIE
7.1 Das elektrostatische Feld von Leitern
7.2 Das Potential von Leitern
7.3 Bestimmung der Green'schen Funktionen
7.4 Raumladungsfreie Probleme
7.5 Dielektrika
8 MAGNETOSTATIK
8.1 Das Biot-Savart'sche Gesetz
8.2 Magnetisches Moment
8.3 Magnetische Multipole
8.4 Magnetische Monopole
8.5 Lineare Stromschleifen
8.6 Magnetische Feldenergie
8.7 Kräfte im Magnetfeld
8.8 Magnetostatik in Materie
8.9 Magnetische Materialien
8.10 Verhalten an Grenzflächen
8.11 Klassische Theorie des Supraleiters
9 ZEITABHÄNGIGE ELEKTROMAGNETISCHE FELDER
9.1 Maxwell-Gleichungen in Materie
9.2 Materialgleichungen
9.3 Bilanzgleichungen
9.4 Rand- und Stetigkeitsbedingungen
9.5 Freie elektromagnetische Wellen
9.6 Quasistationäre Felder
9.7 Telegrafengleichung
10 AUSSTRAHLUNG ELEKTROMAGNETISCHER WELLEN
10.1 Inhomogene Wellengleichungen
10.2 Lösung der inhomogenen Wellengleichung
10.3 Klassische Dipolstrahlung
10.4 Antennen
10.5 Ausstrahlung eines zeitlich variablen mathematischen Dipols
10.6 Dipolstrahlung freier Ladungen
10.7 Nichtrelativistische Elektronen im Magnetfeld
10.8 Die klassische atomare Katastrophe
10.9 Streuung an Elektronen
10.10 Ausstrahlung einer bewegten Punktladung
10.11 Bremsstrahlung
10.12 Cerenkov-Strahlung
11 OPTIK
11.1 Kirchhoff'sche Wellenformel
11.2 Fraunhofer'sche Beugung
11.3 Geometrische Optik
Michael Schulz ist außerplanmäßiger Professor an der Universität Ulm und Geschäftsführer der Indalyz Monitoring & Prognostics GmbH.
Beatrix M. Schulz ist Wissenschaftlerin bei der Indalyz Monitoring & Prognostics GmbH.
Reinhold Walser ist Professor für Physik an der Technischen Universität Darmstadt.