John Wiley & Sons Domain-Specific Modeling Cover Domain-Specific Modeling illustrates examples from various fields of software product development. T.. Product #: 978-0-470-03666-2 Regular price: $120.56 $120.56 Auf Lager

Domain-Specific Modeling

Enabling Full Code Generation

Kelly, Steven / Tolvanen, Juha-Pekka

Wiley - IEEE (Band Nr. 1)

Cover

1. Auflage April 2008
444 Seiten, Softcover
Wiley & Sons Ltd

ISBN: 978-0-470-03666-2
John Wiley & Sons

Kurzbeschreibung

Domain-Specific Modeling illustrates examples from various fields of software product development. The main part of the book addresses the guidelines for implementing DSM: how to identify the necessary language constructs, what options are available for code generation; and what tools are available to provide tool support for a new DSM language. The DSM example cases described in the book are included on an accompanying CD together with an evaluation copy of the MetaEdit+ tool to examine and try out the modeling languages and code generators. Evaluation versions are included for Windows, Linux, and Mac OS X.

Weitere Versionen

mobipdf

Domain-Specific Modeling (DSM) is the latest approach to software development, promising to greatly increase the speed and ease of software creation. Two authorities in the field explain what DSM is, why it works, and how to use it to improve productivity and quality. Divided into four parts, the book covers: background and motivation; fundamentals; in-depth examples; and creating DSM solutions. The book is complemented iwth examples from various fields to illustrate to experienced developers how DSM can improve software development in their teams.

Foreword.

Preface.

PART 1: BACKGROUND AND MOTIVATION.

1. Introduction.

1.1 Seeking the better level of abstraction.

1.2 Code-driven and model-driven development.

1.3 An example: modeling with a general-purpose language and with a domain-specific language.

1.4 What is DSM?

1.5 When to use DSM?

1.6 Summary.

2. Business value.

2.1 Productivity.

2.2 Quality.

2.3 Leverage expertise.

2.4 The economics of DSM.

2.5 Summary.

PART 2: FUNDAMENTALS.

3. DSM defined.

3.1 DSM characteristics.

3.2 Implications of DSM for users.

3.3 Difference to other modeling approaches.

3.4 Tooling for DSM.

3.5 Summary.

4. Architecture of DSM.

4.1 Introduction.

4.2 Language.

4.3 Models.

4.4 Code generator.

4.5 Domain framework and target environment.

4.6 DSM organization and process.

4.7 Summary.

PART 3: DSM EXAMPLES.

5. IP telephony and call processing.

5.1 Introduction and objectives.

5.2 Development process.

5.3 Language for modeling call processing services.

5.4 Modeling IP telephony service.

5.5 Generator for XML.

5.6 Framework support.

5.7 Main results.

5.8 Summary.

6. Insurance products.

6.1 Introduction and objectives.

6.2 Development process.

6.3 Language for modeling insurances.

6.4 Modeling insurance products.

6.5 Generator for Java.

6.6 Framework support.

6.7 Main results.

6.8 Summary.

7. Home Automation.

7.1 Introduction and objectives.

7.2 Development process.

7.3 Home automation modeling language.

7.4 Home automation modeling language in use.

7.5 Generator.

7.6 Main results.

7.7 Summary.

8. Mobile phone applications using Python framework.

8.1 Introduction and objectives.

8.2 Development process.

8.3 Language for application modeling.

8.4 Modeling phone applications.

8.5 Generator for Python.

8.6 Framework support.

8.7 Main results.

8.8 Extending the solution to native S60 C++.

8.9 Summary.

9. Digital Wristwatch.

9.1 Introduction and Objectives.

9.2 Development Process.

9.3 Modeling Language.

9.4 Models.

9.5 Code Generation for Watch Models.

9.6 The Domain Framework.

9.7 Main Results.

9.8 Summary.

PART 4: CREATING DSM SOLUTIONS.

10 DSM language definition.

10.1 Introduction and objectives.

10.2 Identifying and defining modeling concepts.

10.3 Formalizing languages with metamodeling.

10.4 Defining language rules.

10.5 Integrating multiple languages.

10.6 Notation for the language.

10.7 Testing the languages.

10.8 Maintaining the languages.

10.9 Summary.

11. Generator definition.

11.1 "Here's one I made earlier".

11.2 Types of generator facilities.

11.3 Generator output patterns.

11.4 Generator structure.

11.5 Process.

11.6 Summary.

12. Domain Framework.

12.1 Removing duplication from generated code.

12.2 Hiding platform details.

12.3 Providing an interface for the generator.

12.4 Summary.

13. DSM definition process.

13.1 Choosing among possible candidate domains.

13.2 Organizing for DSM.

13.3 Proof of concept.

13.4 Defining the DSM solution.

13.5 Pilot project.

13.6 DSM deployment.

13.7 DSM as a continuous process in the real world.

13.8 Summary.


14. Tools for DSM.

14.1 Different approaches to building tool support.

14.2 A Brief History of Tools.

14.3 What is needed in a DSM environment.

14.4 Current tools.

14.5 Summary.

15. DSM in use.

15.1 Model reuse.

15.2 Model sharing and splitting.

15.3 Model versioning.

15.4 Summary.

16. Conclusion.

16.1 No sweat shops--But no Fritz Lang's Metropolis either.

16.2 The onward march of DSM.

Appendix A: Metamodeling Language.

References.

Index.
"This very clearly written text contains useful detailed explanations inside text boxes and tables, nicely designed, diagrams, and generated software code samples. This is very practical and highly recommended." (Computing Reviews, September 9, 2008)
Steven Kelly, PhD, is the CTO of MetaCase and cofounder of the DSM Forum. He has over fifteen years of experience in building metamodeling environments and acting as a consultant on their use in DSM. As architect and lead developer of MetaEdit+, MetaCase's DSM tool, he has seen it win or become a finalist for awards from Byte, SD Times, the Innosuomi Prize for innovation awarded by the Finnish president, and the Jolt Excellence Awards. Ever-present on the OOPSLA DSM workshop program committee, he co-organized the first workshop in 2001.

Juha-Pekka Tolvanen, PhD, is the CEO of MetaCase. He has been involved in model-driven approaches, metamodeling, and DSM languages and tools since 1991. He has acted as a consultant worldwide on modeling language development and has written over sixty articles for software development magazines and conferences. Dr. Tolvanen started the OOPSLA workshops on DSM in 2001 and has been on the organizing committee since. As cofounder of the DSM Forum, he plays a leading role in the shift toward model-driven software development.

S. Kelly, MetaCase; J.-P. Tolvanen, MetaCase