John Wiley & Sons Independent Component Analysis Cover ICA ist ein statistisches Verfahren, um versteckte Faktoren aus einer großen Anzahl von Messergebnis.. Product #: 978-0-471-40540-5 Regular price: $185.98 $185.98 Auf Lager

Independent Component Analysis

Hyvärinen, Aapo / Karhunen, Juha / Oja, Erkki

Adaptive and Cognitive Dynamic Systems: Signal Processing, Learning, Communications and Control (Band Nr. 1)

Cover

1. Auflage Juni 2001
XXII, 482 Seiten, Hardcover
Handbuch/Nachschlagewerk

ISBN: 978-0-471-40540-5
John Wiley & Sons

Kurzbeschreibung

ICA ist ein statistisches Verfahren, um versteckte Faktoren aus einer großen Anzahl von Messergebnissen herauszufiltern. Wichtige potentielle Anwendungen dieses Verfahrens sind Bildverarbeitung, Data Mining und Signaltrennung. Die Autoren sind Mitglieder einer Forschungsgruppe, die für innovative Ideen auf diesem Gebiet bekannt ist. Bereits heute bietet jede Konferenz über neuronale Netze oder Signalverarbeitung Veröffentlichungen zum Thema ICA; man erwartet, dass sich dieses Gebiet schnell etabliert und in die Studienpläne aufgenommen wird.

Weitere Versionen

mobipdf

A comprehensive introduction to ICA for students and practitioners
Independent Component Analysis (ICA) is one of the most exciting new topics in fields such as neural networks, advanced statistics, and signal processing. This is the first book to provide a comprehensive introduction to this new technique complete with the fundamental mathematical background needed to understand and utilize it. It offers a general overview of the basics of ICA, important solutions and algorithms, and in-depth coverage of new applications in image processing, telecommunications, audio signal processing, and more.
Independent Component Analysis is divided into four sections that cover:
* General mathematical concepts utilized in the book
* The basic ICA model and its solution
* Various extensions of the basic ICA model
* Real-world applications for ICA models
Authors Hyvarinen, Karhunen, and Oja are well known for their contributions to the development of ICA and here cover all the relevant theory, new algorithms, and applications in various fields. Researchers, students, and practitioners from a variety of disciplines will find this accessible volume both helpful and informative.

Preface.

Introduction.

MATHEMATICAL PRELIMINARIES.

Random Vectors and Independence.

Gradients and Optimization Methods.

Estimation Theory.

Information Theory.

Principal Component Analysis and Whitening.

BASIC INDEPENDENT COMPONENT ANALYSIS.

What is Independent Component Analysis?

ICA by Maximization of Nongaussianity.

ICA by Maximum Likelihood Estimation.

ICA by Minimization of Mutual Information.

ICA by Tensorial Methods.

ICA by Nonlinear Decorrelation and Nonlinear PCA.

Practical Considerations.

Overview and Comparison of Basic ICA Methods.

EXTENSIONS AND RELATED METHODS.

Noisy ICA.

ICA with Overcomplete Bases.

Nonlinear ICA.

Methods using Time Structure.

Convolutive Mixtures and Blind Deconvolution.

Other Extensions.

APPLICATIONS OF ICA.

Feature Extraction by ICA.

Brain Imaging Applications.

Telecommunications.

Other Applications.

References.

Index.
"...researchers...introduce independent component analysis as a statistical and computational technique for revealing hidden factors that underlie sets of random variables, measurements, or signals." (SciTech Book News, Vol. 25, No. 4, December 2001)
AAPO HYVÄRINEN, PhD, is Senior Fellow of the Academy of Finland and works at the Neural Networks Research Center of Helsinki University of Technology in Finland.
JUHA KARHUNEN and ERKKI OJA are professors at the Neural Networks Research Center of Helsinki University of Technology in Finland.

A. Hyvärinen, Helsinki University of Technology, Finland; J. Karhunen, University of Technology,Finland; E. Oja, University of Technology,Finland