Iterative Computer Algorithms with Applications in Engineering
Solving Combinatorial Optimization Problems
Software Engineering Best Practices

1. Auflage Januar 2000
416 Seiten, Softcover
Wiley & Sons Ltd
Iterative Computer Algorithms with Applications in Engineering
describes in-depth the five main iterative algorithms for solving
hard combinatorial optimization problems: Simulated Annealing,
Genetic Algorithms, Tabu Search, Simulated Evolution, and
Stochastic Evolution. The authors present various iterative
techniques and illustrate how they can be applied to solve several
NP-hard problems.
For each algorithm, the authors present the procedures of the
algorithm, parameter selection criteria, convergence property
analysis, and parallelization. There are also several real-world
examples that illustrate various aspects of the algorithms. The
book includes an introduction to fuzzy logic and its application in
the formulation of multi-objective optimization problems, a
discussion on hybrid techniques that combine features of
heuristics, a survey of recent research work, and examples that
illustrate required mathematical concepts.
The unique features of this book are: An integrated and up-to-date
description of iterative non-deterministic algorithms; Detailed
descriptions of Simulated Evolution and Stochastic Evolution; A
level of treatment suitable for first year graduate student and
practicing engineers; Parallelization aspects and particular
parallel implementations; A brief survey of recent research work;
Graded exercises and an annotated bibliography in each chapter
1. Introduction.
1.1 Combinatorial Optimization.
1.2 Optimization Methods.
1.3 States, Moves, and Optimality.
1.4 Local Search.
1.5 Optimal versus Final Solution.
1.6 Single versus Multicriteria Constrained Optimization.
1.7 Convergence Analysis of Iterative Algorithms.
1.8 Markov Chains.
1.9 Parallel Processing.
1.10 Summary and Organization of the Book.
References.
Exercises.
2. Simulated Annealing (SA).
2.1 Introduction.
2.2 Simulated Annealing Algorithm.
2.3 SA Convergence Aspects.
2.4 Parameters of the SA Algorithm.
2.5 SA Requirements.
2.6 SA Applications.
2.7 Parallelization of SA.
2.8 Conclusions and Recent Work.
References.
Exercises.
3. Genetic Algorithms (GAs).
3.1 Introduction.
3.2 Genetic Algorithm.
3.3 Schema Theorem and Implicit Parallelism.
3.4 GA Convergence Aspects.
3.5 GA in Practice.
3.6 Parameters of GAs.
3.7 Applications of GAs.
3.8 Parallelization of GA.
3.9 Other Issues and Recent Work.
3.10 Conclusions.
References.
Exercises.
4. Tabu Search (TS).
4.1 Introduction.
4.2 Tabu Search Algorithm.
4.3 Implementation-Related Issues.
4.4 Limitations of Short-Term Memory.
4.5 Examples of Diversifying Search.
4.6 TS Convergence Aspects.
4.7 TS Applications.
4.8 Parallelization of TS.
4.9 Other Issues and Related Work.
4.10 Conclusions.
References.
Exercises.
5. Simulated Evolution (SimE).
5.1 Introduction.
5.2 Historical Background.
5.3 Simulated Evolution Algorithm.
5.4 SimE Operators and Parameters.
5.5 Comparison of SimE, SA, and GA.
5.6 SimE Convergence Aspects.
5.7 SimE Applications.
5.8 Parallelization of SimE.
5.9 Conclusions and Recent Work.
References.
Exercises.
6. Stochastic Evolution (StocE).
6.1 Introduction.
6.2 Historical Background.
6.3 Stochastic Evolution Algorithm.
6.4 Stochastic Evolution Convergence Aspects.
6.5 Stochastic Evolution Applications.
6.6 Parallelization of Stochastic Evolution.
6.7 Conclusions and Recent Work.
References.
Exercises.
7. Hybrids and Other Issues.
7.1 Introduction.
7.2 Overview of Algorithms.
7.3 Hybridization.
7.4 GA and Multiobjective Optimization.
7.5 Fuzzy Logic for Multiobjective Optimization.
7.6 Artificial Neural Networks.
7.7 Quality of the Solution.
7.8 Conclusions.
References.
Exercises.
About the Authors.
Index.
Bangalore University, India, in 1981, and master's and Ph.D.
degrees in Electrical Engineering from King Fahd University of
Petroleum and Minerals (KFUPM), Dhahran, in 1983 and 1987,
respectively. He is currently a professor in the Department of
Computer Engineering of KFUPM. Sait has authored over 85 research
papers in international journals and conferences. He is coauthor of
the book VLSI Physical Design Automation: Theory and Practice,
published in January 1995. He has also contributed two chapters to
a book entitled Progress in VLSI design. He served on the editorial
board of International Journal of Computer-Aided Design between
1988 and 1990. Currently he is the editor of Arabian Journal
for Science and Engineering for Computer Science & Engineering.
His current areas of interest are in digital design automation,
VLSI system design, high-level synthesis, and iterative algorithms.
Habib Youssef received a Diplome d'Ingenieur en Informatique
from the Faculté des Sciences de Tunis in 1982 and a Ph.D. in
Computer Science from the University of Minnesota in 1990. He is
currently and Associate Professor of Computer Engineering at King
Fahd University of Petroleum and Minerals, Saudi Arabia. Youssef
has authored more than 45 journal and conference papers. He is the
coauthor of the book VLSI Physical Design Automation: Theory and
Practice, January 1995. His main research interests are CAD of
VLSI, computer networks, and performance evaluation of computer
systems, and general stochastic and evolutionary algorithms.