One-Dimensional Metals
Conjugated Polymers, Organic Crystals, Carbon Nanotubes and Graphene

3. Auflage September 2015
360 Seiten, Hardcover
8 Tabellen
Monographie
Jetzt kaufen
Preis: 159,00 €
Preis inkl. MwSt, zzgl. Versand
Euro-Preise für Wiley-VCH- und Ernst & Sohn-Titel sind nur für Deutschland gültig. In EU-Ländern gilt die lokale Mehrwertsteuer. Portokosten werden berechnet.
- Gedruckte Ausgabe vergriffen -
Low-dimensional solids are of fundamental interest in materials science due to their anisotropic properties. Written not only for experts in the field, this book explains the important concepts behind their physics and surveys the most interesting one-dimensional systems and discusses their present and emerging applications in molecular scale electronics. Chemists, polymer and materials scientists as well as students will find this book a very readable introduction to the solid-state physics of electronic materials.
In this completely revised and expanded third edition the authors also cover graphene as one of the most important research topics in the field of low dimensional materials for electronic applications. In addition, the topics of nanotubes and nanoribbons are widely enlarged to reflect the research advances of the last years.
One-Dimensional Substances
One-Dimensional Solid State Physics
Electron-Phonon Coupling, Peierls Transition
Conducting Polymers: Solitons and Polarons
Conducting Polymers: Conductivity
Superconductivity
Charge Density Waves
Molecular Electronics
Applications
He has obtained his PhD in Physics at the University of Vienna, Austria, and his Habilitation at the University of Karlsruhe, Germany. After some years at Siemens in Erlangen, Germany, he joined the Institut Laue Langevin and later on the High Field Magnet Lab in Grenoble, from where he moved to Stuttgart to become leader of the Research Group on Synthetic Nanostructures at the Max Planck Institute for Solid State Research. Between 2009 and 2012 he was visiting professor at the School of Electrical Engineering of Korea University.
David L. Carroll is professor at the Wake Forest University. He is a trained materials scientist and received his PhD from Wesleyan University, Middletown, USA. After a stay as postdoctoral fellow at the department of materials science and engineering, University of Pennsylvania, Philadelphia from 1993-1995, he joined the Max-Planck-Institute for solid state research in Stuttgart, Germany. In 1997 he became Assistant Professor at Clemson University and 2001 Associate Professor. He moved with his group to Wake Forest University in 2003, where he founded the Center for Nanotechnology and Molecular Materials.