Physics of Thin-Film Photovoltaics

1. Auflage Dezember 2021
288 Seiten, Hardcover
Wiley & Sons Ltd
Dieses Werk hat zum Ziel, die Physik von Dünnschichtsystemen umfassend und tiefgreifend zu erläutern, so dass sie für Forschende und Studierende verständlich ist. Behandelt werden zahlreiche Aspekte der Physik von Dünnschicht-Photovoltaik, insbesondere die Funktionsweise der Bauelemente, Materialstruktur und -parameter, Bildung von Dünnschichtkontakten, analytische und numerische Modellierung, Ansätze für großflächige Effekte und laterale Inhomogenität, die Physik von Shunts (Zunahme und Auswirkungen) sowie die Alterung der Bauelemente. Außerdem werden verschiedene physikalische Diagnoseverfahren vorgestellt, die sich bei Dünnschicht-Photovoltaik bewährt haben. Sowohl für erfahrene Ingenieure als auch für Studenten ist dieses Werk in jeder Bibliothek unverzichtbar.
Part I General and Thin Film PV 1
I. Introduction to Thin Film PV 1
A. The Origin of PV. Junctions 1
B. Fundamental Material Requirements 3
C. Charge Transport. Definition of Thin Film PV 4
D. Distinctive Features of Thin Film PV 7
References 11
Part II One-Dimensional (1D) Diodes and PV 13
II. 1D Diode 13
A. Metal-Insulator-Metal Diode 13
B. Schottky, Reach-Through, and Field-Compensation Diodes 19
1. Schottky Diode 19
2. Reach Through Diodes 21
3. Field Compensation Diode 23
C. P-N Homo-Junctions 24
D. Heterojunctions 26
E. Other Relevant Types of Diodes 28
F. Field Reversal Diode: A Counterintuitive Case 29
G. Cat's Whisker Diode 30
III. 1D Solar Cell 32
A. 1D Solar Cell Base Model 32
B. Numerical Modeling of 1D PV 38
1. Governing Equations 39
2. Device Model Parameters 40
3. Some Modeling Results 42
IV. Photovoltaic Parameters 43
A. Second-Level Parameters 44
B. Practical Solar Cells and Third-Level Metrics 46
C. Indicative Facts 49
D. Phenomenological Interpretation. Ideal Diode with Other Circuitry Elements 52
V. Case Study 54
A. Field Reversal PV 54
1. Analytical Approach 55
2. Numerical Modeling of the Field Reversal Device Operations 60
B. Miraculous Back Contact 68
References 72
Part III Beyond 1D: Lateral Effects in Thin Film PV 79
VI. Examples of Multidimensional Numerical Modeling 79
VII. Introduction to Random Multidimensional Phenomena 81
VIII. Lateral Screening Length 84
A. Shunt Screening 84
B. Bias Screening 85
C. Quantitative Approach and Linear Screening Regime 88
IX. Schottky Barrier Nonuniformities 91
X. Semi-Shunts 93
XI. Random Diodes 96
A. Weak Diodes 96
B. Random Diode Arrays in Solar Cells 99
C. Random Diode Arrays in PV Modules and Fields 105
XII. Nonuniformity Observations 109
A. Cell Level Observations 109
B. Module Level Observations 118
XIII. Nonuniformity Treatment 121
References 125
Part IV Electronic Processes in Materials of Thin Film PV 131
XIV. Morphology, Fluctuations, and the Density of States 132
A. The Materials of Thin Film PV are Fundamentally Different 132
B. Noncrystalline Morphology 134
C. Long Range Fluctuations of Potential Energy 136
D. Random Potential in Very Thin Structures 139
E. Numerical Estimates and Implications 142
XV. Electronic Transport 144
A. Band Transport in Random Potential 144
B. Hopping Transport Through Thin Noncrystalline Films 147
1. Hopping Between Ideal Electrodes 149
2. Hopping Between Resistive Electrodes 151
3. Critical Area and Mesoscopic Fluctuations 153
XVI. Recombination in Quasi-Continuous Spectrum 155
XVII. Noncrystalline Junctions 161
XVIII. Piezo and Pyro-PV 164
A. The Nature of Piezo-PV 164
B. Piezo-PV Observations 169
C. The Significance of Piezo-PV 171
References 174
Part V Electro-Thermal Instabilities in Thin Film PV 181
XIX. The Two-Diode Model 182
A. Linear Stability Analysis 183
B. The Two-Diode Modeling: Numerical Estimates and Scaling 184
XX. Distributed Diode Model 186
A. Introduction 186
B. Linear Stability Analysis 187
XXI. Simplistic Numerical Modeling 188
XXII. Spontaneous Hot Spots 190
A. Introduction 190
B. Observations 191
C. Numerical Modeling 195
1. Electrical Model 195
2. Thermal Model 199
D. Modeling Results 200
E. Approximate Analytical Model 205
XXIII. Related Work 207
XXIV. Conclusions on the Electro-Thermal Instabilities in Thin Film PV 209
References 210
Part VI Degradation of Thin Film PV 213
XXV. Thin Film vs Crystalline PV Degradation Processes 213
XXVI. Observations 215
A. Cell Degradation 216
B. Module Degradation 222
XXVII. Categories of Degradation 225
A. General Categories 225
B. Thin-Film PV Instabilities 227
1. Shunting Instability 227
2. Contact Delamination Instability 229
XXVIII. Accelerated Life Testing 231
A. Examples of Very Strong ALT: HALT 232
1. EBIC HALT 232
2. LBIC HALT 234
B. Actuarial Approach to ALT 235
C. Concluding Remarks on Degradation 236
References 237
Appendix. Some Methodological Aspects of Device Modeling 243
Appendix A: Model of Series Connection 243
Appendix B: The Diffusion Approximation 245
Appendix C: Long Range Potential 248
1. Point Changes 248
2. Columnar Charges 251
References 253
Index 255
Diana Shvydka, PhD, is a professor in the Department of Radiation Oncology at the University of Toledo, having also received her doctorate from the University of Toledo. With almost 20 years of teaching and industry experience, she has published over 100 papers in scientific and technical journals and holds numerous patents.