Real Analysis
Modern Techniques and Their Applications
Wiley Series in Pure and Applied Mathematics (Band Nr. 1)

2. Auflage April 1999
416 Seiten, Hardcover
Wiley & Sons Ltd
Kurzbeschreibung
Das Buch widmet sich den Funktionen reeller Variablen hinsichtlich sowohl theoretischer Konzepte als auch verschiedener Anwendungsgebiete wie der Topologie und der Integration. In dieser überarbeiteten Neuauflage wurden die Fourier-Analyse und der Abschnitt zu "Verteilungen und Differentialgleichungen" zu eigenständigen Kapiteln ausgebaut, um die Attraktivität des Bandes für Studenten zu erhöhen, die nicht unbedingt an der reinen Analysis interessiert sind. Neu aufgenommen wurde Material zur Hausdorff-Dimension und zu Fraktalen. (04/99)
An in-depth look at real analysis and its applications-now expanded and revised.
This new edition of the widely used analysis book continues to cover real analysis in greater detail and at a more advanced level than most books on the subject. Encompassing several subjects that underlie much of modern analysis, the book focuses on measure and integration theory, point set topology, and the basics of functional analysis. It illustrates the use of the general theories and introduces readers to other branches of analysis such as Fourier analysis, distribution theory, and probability theory.
This edition is bolstered in content as well as in scope-extending its usefulness to students outside of pure analysis as well as those interested in dynamical systems. The numerous exercises, extensive bibliography, and review chapter on sets and metric spaces make Real Analysis: Modern Techniques and Their Applications, Second Edition invaluable for students in graduate-level analysis courses. New features include:
* Revised material on the n-dimensional Lebesgue integral.
* An improved proof of Tychonoff's theorem.
* Expanded material on Fourier analysis.
* A newly written chapter devoted to distributions and differential equations.
* Updated material on Hausdorff dimension and fractal dimension.
Integration.
Signed Measures and Differentiation.
Point Set Topology.
Elements of Functional Analysis.
L¯p Spaces.
Radon Measures.
Elements of Fourier Analysis.
Elements of Distribution Theory.
Topics in Probability Theory.
More Measures and Integrals.
Bibliography.
Indexes.