High-Energy-Density Fuels for Advanced Propulsion
Design and Synthesis
1. Auflage Dezember 2020
XVIII, 480 Seiten, Hardcover
483 Abbildungen (182 Farbabbildungen)
73 Tabellen
Monographie
Kurzbeschreibung
This book comprehensively and systematically demonstrates the theory and practice of designing, synthesizing and improving the performance of high-energy-density fuels.
Jetzt kaufen
Preis: 169,00 €
Preis inkl. MwSt, zzgl. Versand
Euro-Preise für Wiley-VCH- und Ernst & Sohn-Titel sind nur für Deutschland gültig. In EU-Ländern gilt die lokale Mehrwertsteuer. Portokosten werden berechnet.
This book comprehensively and systematically demonstrates the theory and practice of designing, synthesizing and improving the performance of fuels. The contents range from polycyoalkane fuels, strained fuels, alky-diamondoid fuels, hypergolic and nanofluid fuels derived from fossil and biomass. All the chapters together clearly describe the important aspects of high-energy-density fuels including molecular design, synthesis route, physiochemical properties, and their application in improving the aerocraft performance. Vivid schematics and illustrations throughout the book enhance the accessibility to the relevant theory and technologies. This book provides the readers with fundamentals on high-energy-density fuels and their potential in advanced aerospace propulsion, and also provides the readers with inspiration for new development of advanced aerospace fuels.
2. Development History and Basics of Aerospace Fuels
2.1 Introduction
2.2 General Properties and Requirements of Aerospace Fuels
2.3 Development of Aerospace Fuels
2.4 High-Energy-Density Fuels
2.5 Non-Petroleum Fuels
3. Design and Synthesis of High-Density Polycyoalkane Fuels
3.1 Introduction
3.2 Cycloaddition
3.3 Hydrogenation
3.4 Isomerization
3.5 Other Reactions and Procedures
4. Design and Synthesis of High-Density Diamondoid Fuels
4.1 Introduction
4.2 Synthesis of Alkyl-Diamondoids via Acid-Catalyzed Rearrangement
4.3 Synthesis of Alkyl-Diamondoids via IL-Catalyzed Rearrangement
4.4 Synthesis of Alkyl-Diamondoids via Zeolite-Catalyzed Rearrangement
4.5 Alkylation and Other Chemical Synthesis Methods
4.6 Basic Properties of Alkyl-Diamondoids
5. Design and Synthesis of High-Energy Strained Fuels
5.1 Introduction
5.2 Photocatalytic Synthesis of Quadricyclane
5.3 Cyclopropanation
5.4 Spiro and Caged Fuels
6. Design and Synthesis of High-Density Fuels from Biomass
6.1 Introduction
6.2 Carbon-Increasing Reaction Strategies
7. Design and Synthesis of Nanofluid Fuels
7.1 Introduction
7.2 Synthesis and Properties of Nanofluid Fuels
7.3 Methods to Evaluate Stability of Nanofluids
7.4 Approaches to Enhance Stability of Nanofluids
7.5 Typical High-Energy Nanofluid Fuels
7.6 Physical Properties of Nanofluid Fuels
7.7 Formulation and Synthesis of Gelled Fuels
7.8 Rheological Behavior
7.9 Atomization Behavior
7.10 Combustion Behavior
8. Design and Synthesis of Green Hypergolic Liquid Fuels
8.1 Introduction
8.2 Development History of Hypergolic Ionic Liquids
8.3 Physicochemical Properties of Hypergolic Ionic Liquids
8.4 Hypergolic Ionic Liquids
9. Combustion Properties of Fuels and Method to Improve Them
9.1 Introduction
9.2 Typical Equipment Used in Combustion Experiment
9.3 Combustion and Ignition Characters
9.4 Methods to Enhance Ignition and Combustion
9.5 Combustion Mechanism of Nanofluid Fuels
Professor Xiangwen Zhang is the Director of Key Laboratory of advanced fuel and chemical propellant of Ministry of Education. He received his academic degrees from Tianjin University, and became a full professor in 2006. His research interests include fuel processing technology and reaction engineering. He has authored/coauthored more than 300 papers and 30 patents.
Associate Professor Lun Pan received his B.S. and Ph.D. degrees from the School of Chemical Engineering and Technology, Tianjin University, China, in 2009 and 2014, respectively. His research interests mainly focus on the design and synthesis of functional photocatalysts; their related modulation of morphology, facets and surface defects; and their applications in photocatalysis, such as in photocatalytic isomerization for synthesis of advanced fuels. He has published more than 30 papers and 5 patents.