Mathematical Modeling and Simulation
Introduction for Scientists and Engineers

1. Auflage Dezember 2008
XIV, 348 Seiten, Softcover
86 Abbildungen
9 Tabellen
Praktikerbuch
Kurzbeschreibung
Eine Einführung in wichtige Modellklassen, von elementaren statistischen Ansätzen bis hin zu Differentialgleichungsmodellen. Eine kostenlos erhältliche CAELinux-Live-DVD ermöglicht die Nutzung der gesamten "Open Source"-Buchsoftware (einschließlich 3D CFD- und Strukturmechanik).
Jetzt kaufen
Preis: 135,00 €
Preis inkl. MwSt, zzgl. Versand
Euro-Preise für Wiley-VCH- und Ernst & Sohn-Titel sind nur für Deutschland gültig. In EU-Ländern gilt die lokale Mehrwertsteuer. Portokosten werden berechnet.
Um dieses Buch zu verstehen, müssen Sie lediglich Grundkenntnisse der Integral- und Differenzialrechnung und der linearen Algebra mitbringen. Der Autor erklärt auch für Einsteiger und Studenten unterer Semester verständlich, wie man einfache mathematische Modelle formuliert, auswählt, anwendet und die Resultate kritisch analysiert.
Dies wird anhand von Beispielen aus vielen Disziplinen wie Biologie, Ökologie, Wirtschaft, Medizin, Landwirtschaft, Chemie, Elektrotechnik, Prozesstechnik und Maschinenbau erläutert, wobei neben elementaren statistischen Modellen, Regressionsmethoden und neuronalen Netzen auch Modelle in Form gewöhnlicher und partieller Differentialgleichungen detailliert behandelt werden. Das Buch stützt sich ausschließlich auf Open-Source-Software. Die gesamte Buchsoftware - einschließlich 3D-CFD- und 3D-Strukturmechanik-Simulationssoftware - kann auf Grundlage einer kostenlosen, im Internet erhältlichen CAELinux-Live-DVD genutzt werden.
1. Principles of Mathematical Modeling
1.1 A complex world needs models
1.2 Systems, models, simulations
1.3 Mathematics is the natural modeling language
1.4 Definition of mathematical models
1.5 Examples and some more definitions
1.6 Even more definitions
1.7 Classification of mathematical models
1.8 Everything looks like a nail?
2. Phenomenological models
2.1 Elementary statistics
2.2 Linear regression
2.3 Multiple linear regression
2.4 Nonlinear regression
2.5 Neural networks
2.6 Design of experiments
2.7 Other phenomenological modeling approaches
3. Mechanistic models I: ODE´s
3.1 Distinguished role of differential equations
3.2 Introductory examples
3.3 General idea of ODE´s
3.4 Setting up ODE models
3.5 Some theory you should know
3.6 Solution of ODE´s: Overview
3.7. Closed form solution
3.8 Numerical solutions
3.9 Fitting ODE´s to data
3.10 More examples
4. Mechanistic models II: PDE´s
4.1. Introduction
4.2. The heat equation
4.3. Some theory you should know
4.4 Closed form solution
4.5 Numerical solution of PDE´s
4.6 The finite difference method
4.7 The finite element method
4.8 Finite element software
4.9 A sample session using Salome Meca
4.10 A look beyond the heat equation
4.11 Other mechanistic modeling approaches
A CAELinux and the book software
B R (programming language and software environment)
C Maxima
(Yuri V. Rogovchenko, Zentralblatt MATH, European Mathematical Society)
"The book is certainly a reference for those, beginners or professional, who search for a complete and easy to follow step-by-step guide in the amazing world of modeling and simulation (...) it is shown that mathematical models and simulation, if adequately used, help to reduce experimental costs by a better exploration of the information content of experimental data (...) it is explained how to analyze a real problem arising from science or engineering and how to best describe it through a mathematical model. A number of examples help the reader to follow step by step the basics of modelling."
(Marcello Vasta, Meccanica: International Journal of Theoretical and Applied Mechanics, Vol. 44(3), 2009)
"The broad subject area covered in this book reflects the background of the author, an experienced mathematical consultant and academic (...) This book differs from almost all other available modeling books in that the author addresses both mechanistic and statistical models as well as "hybrid" models. Since many problems coming out of industrial and medical applications in recent years require hybrid models, this text is timely. The modeling range is enormous (...) In this single chapter ("Phenomenological Models") he manages to cover almost all the material one would expect to find in an undergraduate statistics program. (...) Parameter sensitivity and overfitting problems are discussed in a very simple context - very nice! (...) The author points out that, by translating a real-world problem into a mathematical form, one brings to bear on that problem the vast knowledge and powerful and free software tools available within the "mathematical universe", and his aim is to enable the reader to source this information. (...) I believe the author has succeeded in providing access to the available tools and an understanding of how to go about using these tools to solve real-world problems."
Neville Fowkes (University of Western Australia) in: SIAM Rev. 53(2), 2011, pp. 387-388 (Society of Industrial and Applied Mathematics, Philadelphia, USA)