Group Theory in Solid State Physics and Photonics
Problem Solving with Mathematica
1. Auflage Juni 2018
377 Seiten, Softcover
100 Abbildungen
Lehrbuch
Kurzbeschreibung
While group theory is well established, this textbook raises two completely new aspects: gaining a better understanding by focusing on problem solving, making extensive use of Mathematica; offering a new tool for photonics by applying the concepts to photonic fibers and crystals.
Jetzt kaufen
Preis: 105,00 €
Preis inkl. MwSt, zzgl. Versand
Euro-Preise für Wiley-VCH- und Ernst & Sohn-Titel sind nur für Deutschland gültig. In EU-Ländern gilt die lokale Mehrwertsteuer. Portokosten werden berechnet.
Das Prinzip der Gruppentheorie ist gut einführt. Dennoch werden in diesem Lehrbuch zwei komplett neue Aspekte vorgestellt: besseres Verständnis durch die Konzentration auf Problemlösungsstrategien und der weitreichende Einsatz von Mathematica sowie die Einführung eines neuen Tools für die Photonik durch die Anwendung von Konzepten auf photonische Fasern und Kristalle.
2 Introduction
I Basics of group theory
3 Symmetry operations and transformations of fields
4 Basic abstract group theory
5 Discrete symmetry groups for solid state physics and photonics
6 Representation theory
7 Symmetry in k-space
II Applications in electronic structure theory
8 Solution of the Schroedinger equation
9 Generalization to include the spin
10 Electronic energy bands
III Applications in photonics
11 Solution of Maxwell's equations
12 Twodimensional photonic crystals
13 Threedimensional photonic crystals
14 Other Applications
A Mathematica Package Reference
B Connection of the group theory package to MPB and MEEP
R. Matthias Geilhufe is currently a post-doctoral researcher at the Nordic Institute for Theoretical Physics (Nordita) in Stockholm (Sweden). He completed his undergraduate and postgraduate studies at the Martin Luther University Halle-Wittenberg (Germany) with specialization in theoretical and computational physics and did his PhD in connection with the Max Planck Institute of Microstructure Physics in Halle. His main research interests are in condensed matter theory, in particular functional organic materials, Dirac materials, superconductivity, and topological band theory.