Transition Metal Oxides for Electrochemical Energy Storage
1. Edition April 2022
XII, 420 Pages, Hardcover
150 Pictures (50 Colored Figures)
Monograph
Short Description
This authoritative handbook focuses on the science and applications of metal oxides for energy storage. It provides in-depth, application-oriented information by covering electrochemistry, morphology and both in situ and in operando characterization.
Buy now
Price: 182,00 €
Price incl. VAT, excl. Shipping
Euro prices for Wiley-VCH and Ernst & Sohn titles are only valid for Germany. In EU countries, local VAT applies. Postage will be charged.
Landscape of Transition Metal Oxides for Electrochemical Energy Storage
Solid State Chemistry of Transition Metal Oxides
PART II. ELECTROCHEMICAL ENERGY STORAGE MECHANISMS IN TRANSITION METAL OXIDES
Intercalation
Pseudocapacitance
Conversion
PART III. ELECTROCHEMISTRY OF TRANSITION METAL OXIDES
Oxide/Electrolyte Interface
Intercalation of Li+ in Non-Aqueous Electrolytes
Intercalation of Na+ in Non-Aqueous Electrolytes
Energy Storage in Multivalent Cation Non-Aqueous Electrolytes
Energy Storage in Aqueous Electrolytes
Transition Metal Oxides as Solid State Electrolytes
PART IV. MORPHOLOGY AND INTERFACIAL ENGINEERING OF TRANSITION METAL OXIDES
Interfacial Engineering of Transition Metal Oxides
Oxide Nanoarchitectures
PART V. CHARACTERIZATION OF TRANSITION METAL OXIDES FOR ENERGY STORAGE
Electrochemical Characterization
In situ/operando XRD
In situ/operando Neutron Diffraction
In situ/operando XAS/EXAFS/TXM XANES
In situ/operando NMR
In situ/operando SPM
In situ/operando Raman and Other Visible Light-based Spectroscopy
In situ/operando TEM and SEM
In situ/operando Thermal Methods
First Principles Calculations
Veronica Augustyn is Assistant Professor of Materials Science & Engineering at North Carolina State University, USA. From 2013-2015 she was a Postdoctoral Fellow at the Texas Materials Institute at the University of Texas at Austin. She received her PhD in 2013 from the University of California, Los Angeles and her BSc in 2007 at the University of Arizona, both in Materials Science & Engineering. Her research is focused on the development and characterization of materials for electrochemical energy technologies including batteries, electrochemical capacitors, electrolyzers, and fuel cells. In particular, she is interested in the relationships between material structure and morphology and the resulting redox behavior and electrochemical mechanisms. She is the recipient of a 2017 NSF CAREER Award and a 2016 Ralph E. Powe Jr. Faculty Enhancement Award, and is a Scialog Fellow in Advanced Energy Storage from the Research Corporation for Science Advancement.