Nonlinear Wave Methods for Charge Transport
1. Edition January 2010
XI, 276 Pages, Hardcover
100 Pictures
Monograph
Short Description
This book introduces and develops mathematical techniques for the treatment of nonlinear waves and singular perturbation methods at a level suitable for graduate students, researchers and faculty throughout the natural sciences and engineering.
Buy now
Price: 165,00 €
Price incl. VAT, excl. Shipping
Euro prices for Wiley-VCH and Ernst & Sohn titles are only valid for Germany. In EU countries, local VAT applies. Postage will be charged.
- Out of print -
The present book introduces and develops mathematical techniques for the treatment of nonlinear waves and singular perturbation methods at a level that is suitable for graduate students, researchers and faculty throughout the natural sciences and engineering. The practice of implementing these techniques and their value are largely realized by showing their application to problems of nonlinear wave phenomena in electronic transport in solid state materials, especially bulk semiconductors and semiconductor superlattices. The authors are recognized leaders in this field, with more than 30 combined years of contributions.
2. Ordinary Differential Equations and Asymptotic Methods
3. Excitable Media 1: Pulses, Fronts, Wave Trains in Continuous Media
4. Excitable Media 2: Discrete Systems
5. Electronic Transport in Condensed Matter: From Quantum Kinetics to Drift-Diffusion Models
6. Bulk Semiconductor Systems: The Gunn Effect
7. Bulk Semiconductor Systems: The Case of Field-Dependent Trapping
8. Semiconductor Superlattices
9. Application to other Systems and the Road ahead
Appendix A: Review of Basic Concepts of Solid State Physics
Appendix B: Detailed Arguments to go from Quantum Kinetic Equations to Boltzmann Transport
Appendix C: Details and Examples of Numerical Methods employed for Simulation
Appendix D: Glossary of Terms
Stephen W. Teitsworth received his Ph.D. in Physics in 1986 from Harvard University, where he also carried out postdoctoral research. For the past several years, he has been a faculty member of the Physics department at Duke University. His current research interests center on experimental and theoretical studies of nonlinear electronic transport and optoelectronic properties of semiconductor-based materials, with a focus on spatially periodic systems such as superlattices.