Wiley-VCH, Weinheim Out-of-Equilibrium (Supra)molecular Systems and Materials Cover This truly needed reference presents comprehensively every aspect about this emerging topic: Chapter.. Product #: 978-3-527-34615-8 Regular price: $148.60 $148.60 Auf Lager

Out-of-Equilibrium (Supra)molecular Systems and Materials

Giuseppone, Nicolas / Walther, Andreas (Herausgeber)

Cover

1. Auflage April 2021
448 Seiten, Hardcover
260 Abbildungen (60 Farbabbildungen)
Handbuch/Nachschlagewerk

ISBN: 978-3-527-34615-8
Wiley-VCH, Weinheim

Kurzbeschreibung

This truly needed reference presents comprehensively every aspect about this emerging topic: Chapters about the design of dissipative self-assemblies, out-of-equilibrium chemical systems and oscillators and many more topics make this book an indispensable source.

Jetzt kaufen

Preis: 159,00 €

Preis inkl. MwSt, zzgl. Versand

Euro-Preise für Wiley-VCH- und Ernst & Sohn-Titel sind nur für Deutschland gültig. In EU-Ländern gilt die lokale Mehrwertsteuer. Portokosten werden berechnet.

Weitere Versionen

epubmobipdf
Out-of-equilibrium (supra)molecular systems and materials: An introduction
Learning from embryo development to engineer self-organizing materials
From clocks to synchrony: the design of bioinspired self-regulation in chemical systems
De novo design of chemical reaction networks and oscillators and their relation to emergent properties
Kinetically controlled supramolecular polymerization
Chemically fueled, transient supramolecular polymers
Design of chemical fuel driven self-assembly processes
Dynamic combinatorial chemistry out-of-equilibrium
Controlling self-assembly of nanoparticles using light
Photoswitchable components to drive molecular systems away from global thermodynamic minimum by light.
Out-of-equilibrium threaded and interlocked molecular structures
Light-driven rotary molecular motors for out-of-equilibrium systems
Design of active nanosystems incorporating biomolecular motors
Index
Nicolas Giuseppone is Distinguished Professor of Chemistry (Classe Exceptionelle) at the University of Strasbourg since 2016. He received his PhD in asymmetric catalysis (laboratory of Prof. H.B. Kagan, University of Orsay, France), performed a post-doctoral research in total synthesis (laboratory of Prof. K.C. Nicolaou, The Scripps Research Institute, La Jolla CA, USA), and entered the field of supramolecular chemistry as a CNRS researcher (laboratory of Prof. J.-M. Lehn, University of Strasbourg, France). He started his own research group in 2008, and was nominated as a member of the Institut Universitaire de France (IUF) in 2013. His research interests are focused on supramolecular chemistry, molecular machines, and functional materials.

Andreas Walther is a Professor at the Department of Chemistry at the University of Mainz (Germany). His research interests concentrate on developing and understanding hierarchical self-assembly concepts inside and outside equilibrium, and on using them to create active, adaptive and autonomous bioinspired material systems. He graduated from Bayreuth University in Germany in 2008 with a PhD focusing on the self- assembly behavior and applications of Janus particles and other soft, complex colloids. After a post-doctoral stay with a focus on biomimetic hybrid materials at Aalto University (Helsinki, Finland), he held positions at the Leibniz Institute for Interactive Materials in Aachen and the University of Freiburg, where he reoriented his research towards life-inspired materials systems. In 2020 he has been appointed to the present position supported by the Gutenberg Research College.